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a b s t r a c t

This paper proposes a diagnosis system using dynamic time warping (DTW) and discriminant analy-
sis with oxidation–reduction potential (ORP) and dissolved oxygen (DO) values for swine wastewater
treatment. A full-scale sequencing batch reactor (SBR), which has an effective volume of 20 m3, was auto-
controlled, and the reaction phase was performed by a sub-cycle operation consisting of a repeated short
cycle of the anoxic–aerobic step. Using ORP and DO profiles, SBR status was divided into four categories
of normal and abnormal cases; these were influent disturbance, aeration controller fault, instrument
trouble and inadequate raw wastewater feeding. Through the DTW process, difference values (D) were
determined and classified into seven cases. In spite of the misclassification of high loading rates, the ORP
profile provided good diagnosis results. However, the DO profiles detected five misclassifications that
wine wastewater treatment

ynamic time warping
iscriminant analysis

indicated different statuses. After the DTW process, several statistical values, including maximum value,
minimum value, average value, standard deviation value and three quartile values, were extracted and
applied to establish the discriminant function. The discriminant analysis allows one to classify seven
cases with a percentage of 100% and 92.7% for ORP and DO profiles, respectively. Consequently, the study
showed that ORP profiles are more efficient than DO profiles as diagnosis parameters and DTW diagnosis

ants.
algorithms and discrimin

. Introduction

Sequencing batch reactors (SBRs) are simple to operate, have
ow space requirements, and are appropriate for dynamic loading
ates and biological nutrient removal [1]. They have become very
opular for treating swine wastewater, which has high amounts of
rganics, nutrients, fibre and minerals when compared to domestic
ewage. Control strategies for sequential on–off aeration are very
mportant to SBR operation, and many control applications can be
sed to detect the endpoint of the nitrification and denitrification
eactions as well as the shortening of the reaction stages based
n oxidation–reduction potential (ORP), pH and dissolved oxygen
DO) measurements [2–4].

Although control techniques have resolved many problems,
hen an uncommon fault occurs in the process, an SBR cannot

perate under control. Therefore, the development of an automated
ault detection method is of significant practical value to the effec-

iveness and robustness of wastewater treatment processes.

Due to the complexity and the time-varying behaviour of bio-
ogical reactions, any process management must be insensitive
o time-varying fluctuations and unexpected parameters. If an

∗ Tel.: +82 33 570 6432; fax: +82 33 570 6819.
E-mail address: bhjun@kangwon.ac.kr.

304-3894/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.jhazmat.2010.09.027
© 2010 Elsevier B.V. All rights reserved.

accurate process model is not available, then fault detection and
diagnosis can be applied using a pattern recognition approach [5].
According to this approach, historical data from normal operation
and past faults must be collected. One can extract the fault cases
from normal operation as separate classes to which the patterns
belong. These training data must then be processed so that impor-
tant information is derived; these procedures are known as feature
extraction.

In this paper, we develop a diagnosis method of determinis-
tic faults in the SBR process using dynamic time warping (DTW)
and discriminant analysis (DA). DTW is a general time alignment
and similarity measurement for two temporal sequences that was
introduced by Bellman [6]. DTW is a flexible pattern recognition
method that can appropriately translate, compress, and expand
patterns so that when the magnitude is invariant, similar features
are matched. The DTW consists of two steps. In the first step, a set of
dynamic patterns of known past faults is collected. The patterns are
then scaled to remove the magnitude information, which enables
the diagnosis scheme to operate independently of the magnitude
of the fault. When the pattern of an unknown fault is obtained,

the same scaling procedure is applied and the scaled pattern is
compared with all reference patterns. DTW has been extended to
handle speech recognition [7,8] and connected word recognition
[9,10]. More recent research on DTW has focused on applying it to
mining patterns from batch reactors in the industrial field [11] and

dx.doi.org/10.1016/j.jhazmat.2010.09.027
http://www.sciencedirect.com/science/journal/03043894
http://www.elsevier.com/locate/jhazmat
mailto:bhjun@kangwon.ac.kr
dx.doi.org/10.1016/j.jhazmat.2010.09.027


B.H. Jun / Journal of Hazardous Materials 185 (2011) 262–268 263

Table 1
Characteristics of raw swine wastewater collected from scraper-type barns (unit: mg/l).

SCOD BOD5 TSS NH4
+-N

11,000 ± 2000 8000 ± 1500 1500 ± 100 3800 ± 4

Table 2
Fault cases in SBR operation.

Fault cases Fault number

Influent loading rate
Normal F1
High F2
Extremely high F3

Aeration control F4

Instrument
Raw water feeding F5
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a threshold method including a set point of dORP/dt or dDO/dt.
Carbon feeding F6

Raw water (slurry) F7

n bioprocess [12] and other spectroscopic fields [13]. Multivari-
te statistical data analysis methods, such as discriminant analysis
nd principal component analysis (PCA), were used to classify the
ata. These techniques have proven to be useful for environmental,
hemical and biological case studies [14,15].

This study develops a knowledge-based diagnosis system using
TW and discriminant analysis with ORP and DO values as vari-
bles for swine wastewater treatment. ORP and DO values are the
ost widely used parameters for SBR control, and most wastew-

ter treatment plants have sensors that can detect these values.
herefore, our proposed diagnosis system based on ORP and DO can
mprove the stability of process management without additional
osts. This study can be applied in the field for rapid fault detection
sing only a sub-cycle signal. This study focuses on developing a
TW-based discriminant analysis to detect faults using ORP and
O profiles obtained from SBRs.

. Materials and methods

.1. Operation of full-scale SBR

A full-scale swine wastewater treatment SBR (effective volume
f 20 m3) of rectangular shape with W 3 m × L 5.5 m × H 2.5 m was
nstalled in Kimhae City. A ring blower supplied 3.64 m3 air/min
hrough 30 units of disk-type diffusers at the bottom of reactor. An

mpeller-type mixer was installed and operated during the anoxic
tage for proper mixing. Raw swine wastewater was collected from
storage tank of scrapper-type barns. The influent characteristics

re shown in Table 1.

Fig. 1. Full cycle operation and typical ORP profile of SBR with fixed time operation; i
T-P Alkalinity pH

00 20 ± 5 13,000 ± 2000 8.7 ± 0.2

The purpose of an SBR is mainly nitrogen removal in a two-
step process of nitrification and denitrification. During nitrification,
ammonia is converted aerobically to nitrate by aerobic microorgan-
isms. In denitrification, nitrate is converted to nitrite or nitrogen gas
under anaerobic conditions by anoxic microorganisms. Because the
C/N ratio of the raw wastewater was less than three, an external
carbon source was required to complete denitrification. The oper-
ating schedule and typical ORP profile for the SBR are shown in
Fig. 1. One main cycle consisted of four sub-cycles, settling, decant
phase and idle phase within 24 h. A classical SBR operation is per-
formed with a fixed time cycle. However, this is a disadvantage
because the cycle length cannot be adapted to process deviations
and influent loading rate changes. Each sub-cycle was fixed at 1 h
of anoxic phase and 3 h of aerobic phase. In automation-mode, the
operation time of the aerobic phase was changed for denitrification
and nitrification. This sub-cycle step performs most of the biologi-
cal reactions and shows typical profiles with important points that
provide information about the beginning and ending of the bio-
logical reactions. The DO and ORP profiles of the sub-cycle were
collected and used for dynamic time warping and discriminant
analysis.

The influent swine wastewater was fed at the beginning of each
anoxic period, except during the final anoxic period, at 0.2–0.4 m3

per batch with a feeding rate of 20 ml/min for 10–20 min. During the
final anoxic period, methanol was fed to enhance denitrification.
The hydraulic retention time was maintained from 10 to 25 days
depending on the strength of the wastewater. Although the concen-
tration of NH4

+–N was high enough to cause substrate inhibition
against nitrification, inhibition could be avoided by increasing
dilution rate using the intermittent feeding of wastewater dur-
ing the sub-cycle operation. The nominal operating loading rate
was 0.22 kg NH4

+–N/m3/day as suggested by Kim et al. [16], and
the volume of the feed was gradually increased to evaluate max-
imum removal capacity while maintaining an effluent quality of
60 TN mg/l.

Because most of the operation time is used for aeration, the
optimisation and control of aeration are important. In a previous
study, the process control using ORP or DO was performed with
However, because these set points are affected by reactor and influ-
ent conditions, periodically fine tuning the set point was required
for stable control [17]. DO and ORP profiles were obtained from a
full-scale SBR. ORP (U.S. filter, Strantrol 880, USA), and DO (Knick,

n automation-mode the aeration time is variable with the influent loading rate.
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Fig. 2. Typical DO and ORP profiles cor

tratos 2401OXY, Germany) sensors were installed in the reactor
or on-line monitoring and control.

.2. Target faults

The on-line data patterns of an SBR are extremely dynamic
epending on the operational mode and influent characteristics,
uch as influent loading rate and C/N ratio. A simple statisti-
al model cannot easily detect abnormal behaviour in an SBR.
owever, a pattern-comparing method could be able to detect
point where an SBR deviates from a template profile that was

enerated from normal operation. The detection and diagnosis
lgorithm were established on the principle that the ORP and
O profile patterns during normal operation were different than

hose of abnormal operation caused by each fault. For the purpose
f this study, we selected fault types in four categories: influ-
nt disturbance, aeration controller faults, instrument trouble and

nadequate raw wastewater feeding. Table 2 lists the detailed def-
nitions of the selected faults.

The most important disturbance in an SBR comes from the
ariations of influence loading rate that affect the biological reac-
ions and the efficiency of the nutrient removal. Influent faults
1 61 121 181 241 301

nding to each fault case from F1 to F7.

are divided into loading rate (F2, F3) and quality disturbance
(F7). Although high loading rates within an adequate range do
not disturb reactor operation, for stable operation, they should be
monitored to avoid overloading (F2). An influent loading rate that
is too high can seriously disturb biological reactions due to the
toxic effect of ammonia in influent (F3). If influent is not fed, the
operator must receive this information as soon as possible. Swine
wastewater can be classified as scraper or slurry type. Scraper
type wastewater is produced as faeces are separated from urine
during collection by a mechanical device and has relatively low
organic concentration. Slurry type wastewater is produced as fae-
ces are mixed with urine and cleaning water, and its organic carbon
concentration is about two times higher than the scraper type. A
public treatment plant is subjected to only scraper type wastew-
ater, and if slurry type wastewater is fed, the operator should be
informed.

Aeration time in the sub-cycle was controlled with the threshold

method using dORP/dt or dDO/dt values as control parameters. If
the set point of a control parameter is too high, the mode change
from the aerobic to anoxic phase will occur more rapidly and cause
imperfect ammonium oxidation. Conversely, a low set value results
in over-aeration during the aerobic phase (F4). These problems are
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time, and the rapidly increasing phase did not occur. The aeration
control fault of F4 shows a very long DO saturation phase. If influ-
Fig. 3. Example of DTW alignment path for the F1.

ncluded in the controller fault, and we recommend a feed-back
esponse for fault diagnosis.

Instrument trouble (F5, F6) means malfunctioning equipment
uch as the influent feeding pump, blower, mixer and chemical
methanol) feeding pump. Influent feeding faults occur in plant
uite frequently by clogging due to a high concentration of solids
nd debris in wastewater. However, chemical feeding pump faults
o not occur often during the operation period.

.3. Dynamic time warping (DTW)

DTW is used to find an optimal alignment between two given
ime-dependent sequences. DTW uses the principle of dynamic
rogramming to nonlinearly warp two sequences. Consider a test
equence T(i × 1) of length I and a reference sequence R(j × 1) of
ength J. To measure the similarity between these two sequences,
n I × J distance table D is constructed, where d(i, j) is the local dis-
ance between T(i) and R(j). Typically, the Euclidean distance is used
o measure the local distances, thus d(i, j) = (T(i) − R(j))2. A warping
ath W is then calculated from a distance table that consists of a set
f table elements that defines the mapping and alignment between
(i) and R(j). The overall distance D(T, R) between the test sequence
nd the reference sequence is then calculated by summing the local
istances over the warping path W. One popular choice for finding
he best alignment between the test sequence and the reference
equence is to search for the path with the smallest distance of all
ossible warping paths. A detailed description of the DTW algo-

ithm can be found in [18]. All programs used for calculation in
he study were written in the Matlab 7.1 (MathWorks) computing
nvironment.
terials 185 (2011) 262–268 265

2.4. Discriminant analysis

Discriminant analysis is a technique used for classifying a set
of observations into predefined classes. Its purpose is to determine
the class of an observation based on a set of variables known as
predictors or input variables. The model is built based on a set of
observations for which the classes are known. This set of obser-
vations is sometimes referred to as the training set. Based on the
training set, the technique constructs a set of linear functions of the
predictors, known as discriminant functions, such that

L = b1x1 + b2x2 + · · · + bnxn + c (1)

where b is the discriminant coefficient, x is the input variable or pre-
dictor and c is a constant. These discriminant functions are used to
predict the class of a new observation when its class is unknown. For
a k class problem, k discriminant functions are constructed. Given
a new observation, all of the k discriminant functions are evalu-
ated, and the observation is assigned to class i if the ith discriminant
function has the highest value. Discriminant analysis constructs a
discriminant function for each group as follows:

f (Gi) = ki +
n∑

j=1

wijpij (2)

where i is a number of group (G), ki is the constant inherent to each
group, n is the number of parameters used to classify a set of data
into a given group, wi is the weight coefficient and pij is a selected
parameter. In this study, we selected seven groups for evaluation,
and a number of analytical parameters were used to measure the
SBR. Data analysis was carried out using the SPSS v. 12.0 statistical
software packages.

3. Results and discussion

3.1. DTW-based classification

The DO values respond to microbial oxidation reactions, so the
DO profile provides a good indication of the ongoing biological
reactions. ORP has a direct correlation with nitrification rates and
other biological reactions in anoxic conditions. ORP can immedi-
ately show the changes of state in situ, but its range of values
changes depending on environmental conditions. Under normal
conditions, ORP is positive in aerobic stages and negative in anoxic
stages. ORP profiles do not always display normal behaviour during
the cycles. When a problem occurs, the most significant difference
between the normal profiles is the ORP value range and slopes dur-
ing aerobic or anoxic stages. While the ORP and DO profiles in full
cycle operation were obtained, the profiles in sub-cycles only were
used to DTW and discriminant analysis as shown in Fig. 1.

Some typical ORP and DO profiles corresponding to each fault
case named F1–F7 are shown in Fig. 2. Because the operation time
of the sub-cycle in automatic mode varies with the circumstances,
some profiles were extended to over 180 min. The normal DO pro-
file can be divided into three different phases including the DO lag
phase where DO is under 2 mg/l, the rapidly increasing phase and
the DO saturating phase. The normal operation of F1 shows typical
DO profiles, which consist of three different phases; these are the
lag phase, the rapidly increasing phase and the saturating phase.
When the influent loading rate is increased, the lag phase of DO
becomes longer than that of F1. If the influent loading rate is above
an acceptable range, the lag phase exceeded the permitted aeration
ent was not fed due to influent feeding pump trouble, the DO lag
phase became much shorter. Both F6 and F7 show a unique profile
pattern, which may be caused by restricted biological reactions.
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Table 3
D values between reference profiles and test profiles.

ORP RE 1 RE 2 RE 3 RE 4 RE 5 RE 6 RE 7 DO RE 1 RE 2 RE 3 RE 4 RE 5 RE 6 RE 7

F1

514 1108 5048 7686 6890 9363 5669

F1

4.6 4.3 58.3 47.4 183.1 13.7 211.4
490 1080 6311 6123 5585 8378 5663 6.3 8.1 73.4 9.9 138.3 11.3 167.6
416 1113 5452 6292 5776 8759 5912 4.4 8.3 57.5 25.9 155.2 9.9 197.2
719 1835 5866 5906 5323 8574 5815 8.3 12.9 34.3 81.5 200.0 11.7 262.8
548 660 5537 5781 5950 8668 6435 5.1 7.3 61.6 27.7 157.0 10.0 193.7

1879 2717 9437 5804 8142 6396 4190 5.8 13.3 81.8 37.8 189.4 11.0 199.8

F2
1015 859 3367 1022 10,892 11,100 7207

F2
5.9 4.1 48.1 29.3 192.9 19.1 200.2

1594 1859 3026 13,979 12,742 14,078 7811 19.3 24.1 82.6 10.0 139.7 20.7 123.9
863 996 3375 10,899 9956 12,272 8092 19.5 26.6 88.7 9.6 117.1 20.6 104.8

F3
11,675 8837 2423 31,963 23,554 30,607 20,958

F3
73.2 74.5 4.1 252.3 303.1 74.7 430.6

14,239 11,541 4388 35,323 26,002 33,966 24,318 99.8 80.4 6.9 321.0 372.9 111.4 515.9

F4
5740 7947 14,558 942 2086 3915 6898

F4
50.8 66.5 146.3 6.8 91.0 60.1 143.8

5525 8361 14,524 562 3436 2918 5940 53.5 69.1 149.2 7.9 92.8 63.3 151.0
7368 10,299 16,210 807 3774 3030 6902 73.3 93.1 172.1 5.8 91.8 81.8 150.1

F5

5765 8596 13,402 3540 731 6450 7448

F5

123.8 144.3 219.2 22.5 5.4 119.7 124.2
3270 8451 11,157 4231 921 7674 10,481 93.2 108.5 189.0 20.5 0.7 113.9 153.8
5371 7263 12,610 3438 559 7622 8339 101.9 121.1 195.1 10.6 21.0 97.0 148.7
5718 8484 13,336 3515 697 6989 7707 113.7 134.5 209.0 18.2 8.2 113.3 136.7
5765 8596 13,402 3540 731 6450 7448 123.7 144.3 219.2 22.5 5.4 119.7 124.3
3287 5421 11,132 4292 36 7731 10,534 91.7 107.1 187.7 21.4 1.5 112.1 155.3

F6
14,230 16,501 23,940 3936 9670 949 7936

F6
28.6 40.7 116.6 16.7 122.0 25.0 101.1

15,598 17,254 23,611 6585 14,752 2987 7694 11.1 22.1 64.5 25.7 154.6 6.0 174.8

8367 10,436 13,403 12,094 12,938 7274 491 136.4 156.6 231.2 72.8 93.3 138.1 6.6
12,582 12,848 13,826 14,445 18,088 7702 1514 140.7 161.7 237.2 72.5 103.2 150.0 12.0
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F7
4996 6696 7745 11,887 10,447 9185 1
4065 5225 7716 11,509 10,248 8822 1
3957 5364 7855 10,425 9511 8356 1
6389 8561 11,342 10,575 11,652 6699 1

The normal profiles of each sub-cycle were used to generate
emplate profiles, which were the mean value of the normal pro-
les at time t. The reference set consisted of seven patterns that
orrespond to seven major deterministic upsets. The method sim-
ly uses the DTW technique to align several training samples and
hen averages them to create the reference template. Only two
r three training samples are usually necessary. The DTW-based
lassifier uses three training samples. The DO and ORP profiles are
ormalised so that they have a length of 120 points. The length

eature is used to pre-select seven reference templates.
The performances of independent new sub-cycles are then com-

ared with the reference set. In the DTW model, the reference and
est data must have equal durations; however, achieving this is
lmost impossible in practice. The operation time of a sub-cycle in
utomation-mode may be different. In such cases, sub-cycle syn-
hronisation is required. For this, the reference and independent
est data are synchronised to a length of 120 points.

Fig. 3 shows an example of the DTW alignment path (A) and
arping result in F1. The cumulative distance (D) from the begin-
ing to the end points (120, 120) is calculated between two points
f the test and reference. These calculated D values are summarised
n Table 3. The gray shaded portions indicate the minimal D values
mong the results of D value calculation. The objective of DTW is
o find the optimal path that connects the beginning and ending
oints of the grid with a minimal D value as shown in Fig. 3B. The
igh similarity between the reference template and the test profile
esults in a linear alignment path and a consequently low value of
issimilarity (D). As shown in Table 3, with the exception of pat-
ern F2, all other ORP-based diagnoses are correct. Discrimination
etween various fault works better when the test pattern is identi-

al to that of the reference patterns and becomes worsen when the
est pattern is similar to another such as F1 and F2.

On the other hand, the DO-based diagnosis also revealed five
isdiagnosis results. The DO results show that the process variable

s the most important factor in the diagnosis. It was thought that
F7
88.6 109.1 187.5 52.9 97.3 92.0 34.3

166.9 185.5 263.5 84.8 90.6 171.1 16.5
178.8 197.9 274.0 92.2 89.8 194.1 9.5
235.9 256.1 332.5 119.5 127.7 243.6 11.3

using a discriminatory power as the classifier with the DTW method
is more sensitive to profile shape patterns than phase length, such
as the lag phase of the DO profile. As result, it was shown that
ORP profiles can be more efficiently applied than DO as a diagnosis
parameter.

3.2. Discriminant analysis

The time-shift problem of each sub-cycle process was solved by
preprocessing the ORP and DO profiles using the DTW algorithm.
After the DTW process, seven statistical values, including maximum
value (Max), minimum value (Min), average value (Ave), standard
deviation value (Stdev) and three quartile values (Q1, Q2, Q3) in
sub-cycle operation were extracted and applied to establish the
discriminant function.

In the DTW model, the DO and ORP profiles were normalised
to a length of 120 points. The statistic variables that were used in
the discriminant analysis were calculated with the same range of
120 points. The discriminant function is defined as the discrimi-
nant standard for the classification of the SBR operating state. The
main purpose of a discriminant function analysis is to predict group
membership based on a linear combination of the interval vari-
ables, which are Max, Min, Ave, Stdev, Q1, Q2 and Q3 in this study.
The procedure begins with a set of observations where both group
membership and the values of the interval variables are known. The
end result of the procedure is a model that allows one to predict
group membership when only the interval variables are known.

In stepwise discriminant function analysis, a discrimination
model is built step-by-step. Specifically, at each step, all variables
are reviewed and evaluated to determine which one contributes

most to the discrimination between groups. That variable will then
be included in the model, and the process begins again.

In this study, all of the variables were included in stepwise
variable selection, and then some were eliminated in a stepwise
manner. An iteration of the procedure consists of the evaluation of
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Fig. 4. Accumulative Eigen values of discriminant function.

he Wilks’ Lambda (�) value of each variable at every step, and the
limination of the variable which has the highest � value. As the
esult of evaluation, five variables, Min, Stdev, Q1, Q2 and Q3, were
elected for discriminant function construction using ORP. For DO,
ve variables, Ave, Max, Q1, Q2 and Q3 were selected. The discrimi-
ant coefficients obtained from the canonical discriminant analysis
ere used to compute the discriminant scores as follows:

Factor ORP (1) = 14.369 + 0.024 ∗ Min + 0.034 ∗ Stdev
−0.004 ∗ Q1 + 0.066 ∗ Q2 − 0.037 ∗ Q3

Factor ORP (2) = 19.656 + 0.073 ∗ Min + 0.133 ∗ Stdev
+0.033 ∗ Q1 − 0.029 ∗ Q2 − 0.014 ∗ Q3

Factor ORP (3) = 21.563 + 0.051 ∗ Min + 0.011 ∗ Stdev
+0.011 ∗ Q1 + 0.008 ∗ Q2 − 0.034 ∗ Q3

Factor ORP (4) = −4.642 + 0.004 ∗ Min + 0.089 ∗ Stdev
+0.026 ∗ Q1 + 0.014 ∗ Q2 − 0.055 ∗ Q3

Factor ORP (5) = −9.301 − 0.044 ∗ Min − 0.019 ∗ Stdev
+0.024 ∗ Q1 − 0.010 ∗ Q2 + 0.013 ∗ Q3

Factor DO (1) = 19.773 − 16.161 ∗ Ave − 9.436 ∗ Stdev
+3.422 ∗ Q1 + 3.713 ∗ Q2 + 6.865 ∗ Q3
Factor DO (2) = 0.468 − 2.014 ∗ Ave − 3.148 ∗ Stdev
−1.988 ∗ Q1 + 2.046 ∗ Q2 + 1.679 ∗ Q3
Factor DO (3) = 2.272 − 8.336 ∗ Ave − 1.179 ∗ Stdev
+5.937 ∗ Q1 + 0.957 ∗ Q2 + 3.670 ∗ Q3
Factor DO (4) = 0.172 − 11.580 ∗ Ave + 6.588 ∗ Stdev
+7.357 ∗ Q1 + 3.847 ∗ Q2 + 0.400 ∗ Q3
Factor DO (5) = −0.060 − 13.745 ∗ Ave + 6.271 ∗ Stdev
+5.945 ∗ Q1 + 3.308 ∗ Q2 + 2.395 ∗ Q3

Factor ORP (1) was dependent largely on Q2 and Stdev. Fac-

or ORP (2) was mainly dependent on Stdev and Min. The canonical
orrelation coefficient for Factor ORP (1), 0.99, was larger than the
orresponding canonical correlation coefficient for Factor ORP (2),
.97. This result shows that Factor ORP (1) had the most discrimi-
ant functions.

Table 4
Classification results in each fault cases.

Variety
Predicted group membership (ORP)

1 2 3 4 5 6
1 8 0 0 0 0 0
2 0 4 0 0 0 0
3 0 0 4 0 0 0
4 0 0 0 5 0 0
5 0 0 0 0 8 0
6 0 0 0 0 0 4
7 0 0 0 0 0 0
-10 -5 0 5 10 15 20
Function 1

Fig. 5. Scatter plot of discriminant score.

As shown in Fig. 4, the accumulative percentages of the third
discriminant function Eigen value of ORP and DO were 92.9% and
99.6%, respectively, and showed that dimension reduction using
principal component analysis (PCA) could be applied effectively.

The number of misclassified sites was determined, and the mis-
classification rate is given in Table 4. The shaded cells indicate an
incorrect diagnosis. None of the ORP group memberships was mis-
classified. One out of F4 and two out of F6 were misclassified. The
discriminant analysis of DO data was able to classify correctly 92.7%

of the original group cases. The discriminant score of F4 had a wide
spread range, which resulted in one overlapping point in the F5
group. The centroid of F6 was located between F1 and F2, which
caused a high possibility of misclassification. Abnormal anoxic con-
ditions caused by chemical feeding pump faults are reflected in

Predicted group membership (DO)

7 1 2 3 4 5 6 7
0 8 0 0 0 0 0 0
0 0 4 0 0 0 0 0
0 0 0 4 0 0 0 0
0 0 0 0 4 1 0 0
0 0 0 0 0 8 0 0
0 1 1 0 0 0 2 0
8 0 0 0 0 0 0 8
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he ORP pattern, whereas the DO profile is less sensitive to anoxic
iological reactions.

The values of the two canonical discriminant functions of Func-
ion (1) and Function (2) can be seen in Fig. 5. In Fig. 5, the fault
ase of ORP data can be divided into seven different groups. There
as no misclassification of ORP data in spite of the close proximity

etween F1 and F2. Because the operating status of F2 required the
perator’s increased attention but was not itself a serious fault, the
roximate discriminant group was assumed to be acceptable.

Consequently, we concluded that using ORP profiles is more
fficient than DO and DTW algorithms, and discriminant analysis
an be applied to stable SBR operation for swine wastewater treat-
ent. In fact, effective diagnosis was possible using a discriminant

nalysis with the simple statistical values of maximum, minimum,
verage, standard deviation and quartile values.

. Conclusion

The diagnosis method of deterministic faults in a full-scale SBR
or swine wastewater treatment was studied using dynamic time
arping and discriminant analysis. Based on this study, we were

ble to draw the following conclusions:

. Using ORP and DO profiles that were extracted from sub-cycle,
full-scale SBR status can be divided into a normal case and four
abnormal categories—influent disturbance, aeration controller
fault, instrument trouble and inadequate raw wastewater feed-
ing.

. Using the DTW process for seven reference and operation pro-
files, difference values (D) were determined and classified into
seven cases. Although the DTW process misclassified high load-
ing rate (F2), the ORP profile provided good diagnosis results.
However, the DO profiles detected five misclassifications.

. After the DTW process, several statistical values, including max-
imum value (Max), minimum value (Min), average value (Ave),
standard deviation value (Stdev) and three quartile values (Q1,
Q2, Q3), were extracted and applied to establish the discriminant
function. The accumulative percentages of the third discrim-
inant function Eigen value of ORP and DO were 92.9% and
99.6%, respectively; this finding proved that dimension reduc-
tion using principal component analysis (PCA) could be applied
effectively.
. Discriminant analysis allows us to classify seven cases with a per-
centage of 100% and 92.7% for ORP and DO profiles, respectively.
This study showed the ability of the method to classify process
faults independently of their magnitude or the time origin of the
fault. The use of PCA as an additional extraction step reduced the

[

[

terials 185 (2011) 262–268

dimensions of each profile and resulted in an improvement of the
discriminatory power of the classifier. Consequently, we con-
cluded that the DTW algorithm and discriminant analysis can be
applied to stable SBR operation for swine wastewater treatment.
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